

A Robotics Innovation for USAR - ImPACT Tough Robotics Challenge

Satoshi Tadokoro

Professor, Tohoku University Director, Tough Cyberphysical AI Research Center / Graduate School of Information Sciences / International Research Institute of Disaster Science President, International Rescue System Institute

2022.5.5 Humanitarian Network and Partnership Weeks CURSOR Workshop

R International Rescue System Institute

Kobe, Jan. 1995

Tohoku University Seriously Damaged Bldg. 28 /588 Bldg. Damage: 448 MUSD Facility Damage: 324 MUSD

Tre

AFRI IN

Quince for Fukushima-Daiichi Nuclear Plant

Roles and Needs of Disaster Robots

What are Expected from Robotics?

Remote/automatic

A) Investigation of situation (e.g. information gathering) B) Work for reducing damage (e.g. recovery works) for Substituting human

When is Robotics Needed?

- 1) Inaccessible for human, such as confined space, high place, water, etc.
- 2) High (potential) risk of contamination, fire, explosion, etc.
- 3) Improve quality/accuracy by informatization, such as integration of information of position and data
- 4) Reduce the cost by remote/automated operation, such as of long-term/global routine works

tional Rescue System Institute

OUGH

Disaster Cycle and Robot Needs

Calm-down at Acute Emergency <u>Response</u> (Days)

- Evacuation
- Search & rescue
- Emergency investigation
- Emergency work
- Emergency repair

Recovery (Months)

- Damage investigation
- Remedial work
- Repair work

Recovery from Damage

ational Rescue System Institute

Reduce Risk

Preparedness (>10 yrs)

- Inspection of facilities
- Aseismic reinforcement
- Coastal levee maintenance
- Maintenance of aged infrastructures and factories

<u>Revival</u> (Years)

- Daily life
- Economy, labor

Return to Normal

- Frequent natural/man-made disaster Robotics for Effective Solution
 - Preparedness, Response and Recovery, Search and Rescue
 - Impossible for Human, High Risk for Human, Rapid/Efficient Task Execution
- Tough Robust Robots ← Fragile Technologies

Tough & Robust

- ✓ Accessibility in extreme conditions
- Sensing in adverse conditions (hearing, watching and touching)
- ✓ Recovery from failure
- Compatibility with disaster environment

Robot Needs: Response to Earthquake

TOUGH Robotics Challenge

Disaster	Mission	Insufficiency	ImPACT-TRC Solution	
	Surveillance Gather info from sky OSSOC	Drones but Risk of crash Wind & rain	Mini-Surveyor Robust in strong wind/rain Lower risk	
	Firefighters Police, Military S&R Find victims	Rescue Dog but Where run? Why barked?	Cyber Resc. Dog Cyber suit for remote monitoring and guidance	<u> ませンサ カメラとマイク GPS </u>
	in rubble Firefighters Police, Military Ressue Dogs	Scopes but Mobility Where?	Serpentine R. (Thin) Penetrate into rubbles to search and comm.	
Kumamoto-EQ ImPACT-TRC Investigation	Const- ruction Remote work Const. Company Local Gov.	Remote C. but Low mobility Low efficiency	Construction R. Dual arms with high power & precision for tasks & mobility	8

Active Scope Camera, A Serpentine Robot

ABOTICS

Our conventional approach: Active Scope Camera (ASC)

Self-propelled video scope [IROS 07]

The ASC can propel forward with the ciliary vibration drive, which generates propulsion force by vibrating tilted cilia wrapped around the flexible robot.

Advantages of ASC (1)

Whole contacted surface generates driving force

Lager contact area generates larger propelling force by distributed drive

Big advantage for inspection in a narrow confined space

Standard industrial video scope (x3)

Active Scope Camera (x3) [Konyo, Tadokoro, Tohoku U]

Advantages of ASC (2)

Light flexible continuum body

Vertical Exploration with

- Robustness in rubble
- Durability
- [Konyo, Tadokoro, Tohoku U]

× 8.0

Active Scope Camera Deployment to Construction Accident in Jacksonville

[Tadokoro, Tohoku U Murphy, USF]

- Jan. 4-5, 2008 @ Jacksonville, FL
- Gathered evidence info. 7 m deep
 - Shape & direction of RC cracks
 - Shape & cross section of flakes
 - Image of spaces inside
- Impossible by other equipment
 - size, mobility, controllability

CRASAR-IRS Deployment to Cologne Historic Archive Collapse

Cologne, Germany, March 6-8, 2009

R International Rescue System Institute

Search for 2 victims

- Standby for 3 days
- Operation from rubble pile 30 m high was too risky.

IONS Tadokoro, Tohoku U; Murphy, TAMU]

Fukushima-Daiichi 1st Unit

- Investigation of the operating floor (5F) under the dropped roof in order to extract used fuel rods
- A cover has been constructed to prevent leakage of radiation.
- Balloon in the building has captured image from the hatch.
- Pole camera from the cover had limited accessibility.
- No solution for heavily crushed area.

Our Solution for Investigation

Experiment in Simulated Space (2013)

Mission at Fukushima-Daiichi (April 2016)

(C) TEPCO [Konyo, Tadokoro, Tohoku [1]

Structural Investigation (Dec 2016 – Feb 2017)

SHIMIZU CORPORATION

TOHOKU

- > Findings:
 - Roof iron framework has its original shape.
 - It can be removed by cutting the structure.

Dose Rate in Well Plug (Dec 2016 – Feb 2017)

> Findings:

Insertion Guide

• The center of well plug has higher dose rate

R International Rescue System Institute

Thin Serpentine Robot - Project Topics and Groups

Insufficient Capabilities in Real Missions

Mobility (rubbles, gaps, turning, speed, ...)

- Sensing (for Search and Navigation)
- Usability (for quick easy operation)

Mobility

OUGH OBOTICS HALLENGE

Hyper mobility by Jet injections Tadokoro, Konyo (Tohoku Univ.)

Ciliary vibration drive

Air-jet floating

Vision

Visual SLAM Okatani (Tohoku Univ.)

Image Recognition Yamazaki (Shinshu Univ.)

Auditory

Realtime speech enhancement Posture estimation Okuno, Bando (Waseda Univ., AIST)

Offline speech enhancement Saruwatari (Univ. Tokyo) Tactile

Contact Sensing Konyo (Tohoku Univ.)

Advanced Mobility by Air-jet

Head Floating by Air-jet

Key issue:

TOUGH ROBOTICS C HALLENGE

Achieving stability of the lightweight flexible cable in the air

[Ambe, Konyo, Tadokoro, Tohoku U]

Stable Floating and Head Direction Control

TOUGH Robotics Challenge

[Ambe, Konyo, Tadokoro, Tohoku U]

[Ambe, Konyo, Tadokoro, Tohoku U]

Sensory Integration

OUGH ROBOTICS HALLENGE

Detection of Pre-Registered Targets

Visual Support for Victim Search

Image recognition and categorizing rubble

[Yamazaki, Shinshu U]

• Analyzing objects in video \rightarrow Extracting possible objects

Input Image

Image segmentation

Detection of target

Unsupervised Learning

Categorize without prior knowledge using NN (Convolutional Autoencoder) and automatically updated.

Blind Speech Enhancement

[Bando, Kyoto U; Okuno, Waseda U]

Visual SLAM

Bottleneck: Confined Space (Distance to objects, Tracking failure by rapid movement)

Solutions: Adaptive selection of flames from high-speed camera, Integration with IMU

Contact Estimation and Visio-Haptic Display

[Konyo, Tohoku U; Bando, Kyoto U; Okuno, Waseda U]

Contact Information for Navigation

- Detection of deadlock by local contacts
- Keeping contact area for stable drive

Estimation by Distributed Vibration Sensors

- Vibration motor for excitation
- Machine learning for recognizing the change of vibration

Estimated Posture + Contact Points (red)

Autonomous Motion in Rubble

[Konyo, Tohoku U; Bando, Kyoto U; Okuno, Waseda U]

Estimated Position & Posture of ASC

Speed & Twist of Insertion Direction of Air Jet

Automatic Inserter [IEEE/ASME AIM2018 Best Paper Award]

Air-Jet Active Scope Camera for First Responders

- Portability by using air from air tank of firefighters [Konyo, Tadokoro, Tohoku U] (6 min/tank for continuous jet = 20 min regular operation)
- Lightweight meal nozzle by wrought Al-Mg alloy \rightarrow better durability
- Lightweight design by limiting sensors (microphone, speaker, IMU)

Evaluation by Kobe FD (March, 2019)

- Kobe Super-Eagle Hyper Rescue 14 firefighters
- Questionnaires for usability for future deployment
- Pros
 - High mobility for entering small gaps where pushing operation does not work
 - Higher mobility at obstacles
 - Communication with victims
 - Applicable to duct fires, oxygenshortage accidents in manholes and ships

- Cons
 - Higher mobility is desired
 - Autonomy is expected for easier operation
 - Dust by air jet affects victims
 - Insufficient situation awareness
 - Appropriate training program to learn the basic operation is necessary

Inspection of collapsed house by landslide

Okayama, Western Japan Heavy Rain

[July.25-26, 2018]

Target: Two-story wooden house collapsed by a landslide due to heavy rain

Damage classification

TOUGH

ROBOTICS C HALLENGE

First floor

Cracks in walls

Second floor failure Total collapse

Inserted through 3-m pipe from the east side

TOUGH BOBOTICS C HALLENGE

Inspection of collapsed house by landslide

Okayama, West Japan Heavy Rain

[July.25-26, 2018]

Passive type air-jet floating ASC was applied

Insertion depth: approx. 3 m (x2)

Insertion depth: approx. 5 m (x2)

- Successfully inserted in 5 m max. through a narrow path
- Air-jet floating could surmount rubble with large steps and gaps
- Sensing system is necessary to localize the position

Other problems : Durability and Operability

Cyber Rescue Canine

OBOTICS

HALLENE

✓ Cyber-enhanced Rescue Canine (CRC) New method for searching victims [Ohno, Tohoku U] by fusion of human, dog, and robot technologies Dog (Excellent olfactive & mobility) ← Robot technology :

Human (Excellent judgment)

Search & rescue dog

Disaster response robots

Supplement to ability of SAR dogs with disaster response robotics/

Sensing, Recognition, Control

System of Cyber-enhanced Rescue Canine (CRC)

Tough technologies for Cyber Rescue Canine suits

- 1) Remote monitoring of canines' motion, watching image, sound (Ohno G)
- 2) Lightweight Cyber Rescue Canine suits (Ohno G)
- 3) Retrospective image search for belongings left by victims (Yamazaki G)
- 4) Estimation of canine's emotions from its heart rate variation (Kikusui G)
- 5) Estimation of canine's behaviors from an IMU sensor (Shinohara G)
- 6) Estimation of canine's trajectory using visual SLAM (Okatani G)
- 7) Motion control of canine using light sources (Ohno G)

GUI for Dog Handler

Mapping of motion and behavior (run, walk, sniff, found victim)

[Ohno, Tohoku U; Dawn; Murphy, TAMU]

Cyber-enhanced Rescue Canine Assoc. Prof. Kazunori Ohno Tohoku University NICHe School of Engineering, Tokyo University **RIKEN AIP** Dawn corp. FURUNO

Emotion of Dog during Training

[Kikusui, Azabu U; Ikeda, NAIST; Ohno, Tohoku U]

Dog Navigation using Laser Beams

[Kikusui, Azabu U; Ohno, Tohoku U]

Dog Navigation using Laser Beams

[Kikusui, Azabu U; Ohno, Tohoku U]

A Collaborative Project on Robotic Equipment for Search and Rescue Jointly Funded by HORIZON2020 (EU) and JST (Japan)

Satoshi Tadokoro, Tohoku University

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 832790, and from the Japan Science and Technology Agency's SICORP framework under grant No. JPMJSC1810.

CURSOR Research Goals

CURSOR Search and Rescue Kit

- CURSOR SaR Kit for advanced search and rescue in debris cones
- Swarm of soft miniaturised robots SMURFs w/ advanced VOC sensors Sniffer
- Mothership Drones w/ ground penetrating radars
- Transfer Drone for robots
- Integration and reasoning of sensory information for common operational picture and incident management

SMURF V1.0.3

1)Wheel	Dia. 155 mm, Elastic structure.		
(2)Geared motor	1 W x 2, 33 rpm, 1:1000.		
③LED indicator	Green for Wi-Fi, Red for other purpose.		
4 Power switch	Push type, LED for remained battery capacity.		
5 LED lighting	3W x 2, 180-200 lm.		
6 Hook	Passively store by a torsion spring.		
7 Battery	LiPo. 7.4 V, 3300 mAh.		
(8) Main Board	Raspberry Pi Zero, 1GHz, 512 MB.		
(9)IMU	Accel. x 3 / Gyro x 3 / Mag. x 3 / Temp.		
10 Speaker	0.7 W.		
(11)Microphone	SN ratio 65 dB.		
12 Thermal camera	80x60 pixel, Longwave infrared, 8 μm to 14 μm.		
⁽¹³⁾ Visual camera	3280x2464 pixel, Viewing angle 220°.		
(14) Antenna	2.4 GHz and 5 GHz.		
Beacon	To be installed		
Sniffer	To be installed		

SMURFV1 Field Test Overview @ Hyogo Pref. EM & Training Center

Fig.1 Climb up the inclined concrete culvert

Fig.2 Climb up the inclined concrete culvert (another angle)

Fig.3 Enter the duct pipe

Fig.4 Enter the rollover car

Fig.5 Run on the mesh fence

Fig.6 Run on the grating

SMURF V1.0.5 Field Test Overview in SSFT1.2 @ Camps Couderc, Brignoles, France

Fig.1 Enter narrow spaces

Fig.2 Enter a concrete pipe

Fig.3 Drop on rubbles

Fig.4 Run on mud

Fig.5 Run on woods

Fig.6 Run on porcelain and brick tiles

ImPACT YouTube Video

- ImPACT-TRC R&D Achievement (17 min) https://youtu.be/lj3pQP_DzsI

ImPACT Book:

https://www.springer.com/gp /book/9783030053208

Springer Tracts in Advanced Robotics 128
Satoshi Tadokoro <i>Editor</i>
Disaster
Robotics
Results from the ImPACT Tough Robotics Challenge
* star Springer